Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38359903

RESUMO

Green banana flour (GBF) is a novel ingredient that is high in resistant starch and could be a dietary fiber source in companion animal nutrition. In addition, with its light brown color and pectin content, GBF could potentially serve as a natural color additive and thickening agent in pet food manufacturing. The purpose of this research is to evaluate different sources of GBF, the effect of GBF on texture and color in canned foods, and its effect on apparent total tract digestibility (ATTD), fecal characteristics, and fecal fermentative end-products in healthy adult cats. Prior to the feline study, different sources of GBF were analyzed for chemical composition, manufacturing properties, true metabolizable energy, and fermentability. For the feline feeding trial, all treatment diets were formulated to meet or exceed the Association of American Feed Control Officials (Association of American Feed Control Officials (AAFCO) 2020. Official Publication. Champaign, IL.) guidelines for adult cat maintenance. There were five dietary treatments: rice control (4% rice flour), potato control (4% dehydrated potato flakes), 1% GBF (1% GBF and 3% rice flour), 2% GBF (2% GBF and 2% rice flour), and 4% GBF. All treatment diets were analyzed for texture and color. The animal study was conducted using a completely randomized design with 39 adult domestic cats. There was a 7-d diet adaptation period followed by a baseline fresh fecal collection to determine fecal score, pH, short-chain fatty acid, branched-chain fatty acid, phenol, indole, ammonia, and microbiota. The treatment period lasted for 21 d and a total fecal collection was performed during the last 4 d of this period to determine the ATTD. A fresh fecal sample was also collected during the total fecal collection to evaluate fecal score, pH, metabolites, and microbiota. The MIXED model procedures of SAS version 9.4 were used for statistical analysis. Treatment diets containing GBF had a lower hardness from the texture profile analysis (P < 0.05). For color analysis, the 4% GBF diet was darker in color compared with the rice diet (P < 0.05). There was no difference in food intake, fecal output, or ATTD of macronutrients among the treatment groups (P > 0.05). There was no interaction of treatment and time or main effects shown in fecal score, pH, metabolites, or microbiota diversity (P > 0.05). In conclusion, adding GBF to canned diets may affect the texture and color of the product, but GBF was comparable to traditional carbohydrate sources, rice, and potato, from a nutritional aspect.


Green banana flour (GBF) is a novel ingredient in the pet food industry but has been gaining popularity in human nutrition. Not only can GBF be a source of dietary fiber in pet foods, but the natural brown color and hygroscopic properties also show the potential in contributing to physical characteristics. With its soluble fiber content, green banana flour has fewer calories than a digestible starch and is partially fermentable. The current study aimed to examine the effect of green banana flour on canned cat foods in comparison to traditional starch sources. Canned diets were made with predominately chicken and the test carbohydrate sources of rice flour, dehydrated potato flakes, and/or green banana flour. Canned food with a high inclusion rate of green banana flour showed differences in texture and color when compared with traditional diets; the finding indicated that green banana flour could be utilized to obtain desirable wet food characteristics, including color and texture. As a carbohydrate source in the canned diet, green banana flour had comparable effects on digestibility and gut microbiota to traditional starches when fed to cats. In conclusion, green banana flour can be used as an alternative carbohydrate source in canned diets and contribute to product texture and color.


Assuntos
Farinha , Musa , Gatos , Animais , Digestão , Ração Animal/análise , Dieta/veterinária , Fezes/química , Fenômenos Fisiológicos da Nutrição Animal
2.
Front Vet Sci ; 9: 1090695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570508

RESUMO

Introduction: Low thiamin levels in thermally processed canned cat foods are concerning for the pet food industry. However, there is little information on storage stability of thiamin in this food format or if inclusion of select ingredients, such as dried yeasts, has an effect. Therefore, the objective was to evaluate the storage stability of thiamin when a vitamin premix and/or yeasts ingredients were included in a canned cat food. Materials and methods: The factorial treatment arrangement consisted of 2 levels of vitamin premix (with or without) and 4 inclusions of yeast (NY = none, LBV = Lalmin B Complex Vitamins, BY = product #1064B, or EA = BGYADVANTAGE). Diets were stored for 6 months and analyzed every month for thiamin. Data were analyzed as a mixed model (SAS v. 9.4; SAS Institute, Cary, NC) with fixed effects (vitamin premix, yeast, time, and their two-way and three-way interactions) and random effects (production day and the interaction of production day, vitamin premix, and yeast). Significance was set at P < 0.05 and Fisher's LSD was used to separate means. Results and discussion: Diets including the vitamin premix [average 55.1 mg/kg dry matter basis (DMB)] contained more (P < 0.05) thiamin than diets that did not (average 7.5 mg/kg DMB). Inclusion of LBV (average 40.3 mg/kg DMB) resulted in the highest (P < 0.05) levels of thiamin, followed by BY (P < 0.05; average 26.9 mg/kg DMB). Diets with NY and EA contained the lowest (P < 0.05) levels of thiamin and were not different from each other (P > 0.05; average 19.3 mg/kg DMB). The diet containing vitamin premix without yeast lost (P < 0.05) 17.8% thiamin while diets containing a yeast ingredient maintained thiamin levels better during storage. This suggested that thiamin from yeast ingredients was more resistant to degradation during storage and should be considered when designing new canned cat foods.

3.
PLoS One ; 17(8): e0271600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35917321

RESUMO

Significant improvement in thiamin retention of canned cat food has not been achieved by altering processing conditions. Some ingredients, such as yeasts, may supply thiamin able to withstand thermal processing. Therefore, the study objective was to evaluate yeast ingredients as thiamin sources for canned cat food. Six yeast ingredients were screened for thiamin content, and values ranged from 9.9-4,283.8 mg/kg dry matter basis (DMB). Treatments for thermal processing were arranged as a 2×4 factorial with 2 levels of vitamin premix (with or without) and 4 yeast ingredients (NY = none and LBV, BY, or EA from the ingredient screening). Replicates (n = 3) were processed in a horizontal still retort to an average lethality of 79.23 minutes. Thiamin degradation was analyzed as a mixed model with pre-retort thiamin content as a covariate and production day as a random effect. Main effects of vitamin premix and yeast and their interaction were significant at P-values less than 0.05. The Fisher's LSD post hoc comparison test was used to separate means. On average, experimental formulas retained 33.75% thiamin. The main effect of vitamin premix (average -42.9 mg/kg DMB) was not significant (P > 0.05). Thiamin degradation between NY (-31.3 mg/kg DMB) and BY (-33.8 mg/kg DMB) was similar (P > 0.05) whereas EA (-40.5 mg/kg DMB) and LBV (-55.6 mg/kg DMB) lost more (P < 0.05) thiamin than NY. The experimental formula of EA with vitamin premix (-70.3 mg/kg DMB) lost more (P < 0.05) thiamin than no yeast, BY, or EA without vitamin premix (average -17.4 mg/kg DMB) and all others (average -57.3 mg/kg DMB) were intermediate (P > 0.05). In summary, thiamin from yeast ingredients didn't exhibit better thermal stability than thiamin mononitrate. However, those ingredients with similar degradation levels or uniquely high thiamin levels may provide added value.


Assuntos
Tiamina , Vitaminas , Ração Animal/análise , Animais , Gatos , Alimentos em Conserva , Tiamina/metabolismo , Vitaminas/metabolismo , Leveduras/metabolismo
4.
J Anim Sci ; 100(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100391

RESUMO

Insect meals are novel and potentially sustainable protein sources. The objectives of this study were to determine the chemical composition and standardized amino acid digestibility using the cecectomized rooster model of three selected insect meals (i.e., speckled cockroach [SC], Madagascar hissing cockroach [MC], and superworm [SW]) and to determine the effects of these insect meals on food intake, apparent total tract digestibility (ATTD) of macronutrients, fecal scores, and metabolites of adult cats fed insect- or chicken-based retorted diets. This study consisted of a complete randomized design, with 28 adult cats randomly assigned to one of the four experimental retorted diets: Control (chicken-based diet), SC diet, MC diet, or SW diet. All animal procedures were approved by the University of Illinois Institutional Animal Care and Use Committee. All diets were formulated to be complete and balanced and meet or exceed the nutritional requirements of adult cats. The experimental period was 28 d, with the first 7 d allotted for diet adaptation. The total fecal collection was completed during the last 4 d of the experimental period. On day 21, a fresh fecal sample from each cat was collected for the determination of fecal metabolites and microbiota. Food was offered twice daily to maintain body weight and body condition score. Among the three selected insect meals evaluated, oleic acid, palmitic acid, linoleic acid, and stearic acid were the most prevalent fatty acids. Branched-chain amino acids and arginine were the most preponderant indispensable amino acids in these insect meals. ATTD of dry matter, organic matter, acid-hydrolyzed fat, and crude protein did not differ among treatments (P > 0.05), and all diets were well digested by the cats. Similarly, fecal scores did not differ among the treatments and were within ideal range. No differences (P > 0.05) in fecal metabolite concentrations or microbiota diversity were observed among cats fed different experimental diets; only a few genera from Firmicutes and Bacteroidota phyla differ (P < 0.05) in cats fed SW diet in contrast to other dietary treatments. In conclusion, the selected insect meals evaluated herein are rich in linoleic acid, an essential fatty acid for cats. Insect-based retorted diets led to comparable results to those achieved with a chicken-based retorted diet, suggesting that these novel protein sources might be adequate alternative ingredients in feline diets.


Insect meals are novel and potentially sustainable protein sources. The objectives of this study were to determine the nutrient composition of speckled cockroach, Madagascar hissing cockroach, and superworm (SW) and to determine the effects of these insect meals on food intake, digestibility of macronutrients, fecal scores, metabolites, and microbiota of adult cats fed insect- or chicken-based wet pet foods. Among the three selected insect meals evaluated, oleic acid, palmitic acid, linoleic acid, and stearic acid were the most prevalent fatty acids. Branched-chain amino acids and arginine were the most preponderant indispensable amino acids in these insect meals. All diets were well digested by the cats with no differences observed on macronutrient digestibility. Similarly, fecal scores did not differ among the treatments and were within the ideal range. No differences in fecal metabolite concentrations were observed. Only a few genera from Firmicutes and Bacteroidota phyla differ in cats fed SW diet in contrast to other dietary treatments. Overall, the selected insect meals evaluated herein are rich in linoleic acid, an essential fatty acid for cats. Insect-based retorted diets led to comparable results to those achieved with a chicken-based retorted diet, suggesting that these novel protein sources might be adequate alternative ingredients in feline diets.


Assuntos
Digestão , Microbiota , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Gatos , Galinhas , Dieta/veterinária , Fezes/química , Insetos , Masculino , Refeições
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA